Acta Cryst. (1976). A32, 32

Bestimmung der Magnetischen Phasen von Eisen(II)-chlorid-doppelhydrat, FeCl₂.2H₂O, und Kobalt(II)-chlorid-doppelhydrat, CoCl₂.2H₂O, mit Neutronenbeugung

VON W. SCHNEIDER* UND H. WEITZEL

Fachgebiet Strukturforschung der Technischen Hochschule, 61 Darmstadt, Deutschland (BRD)

(Eingegangen am 25. Februar 1975; angenommen am 16. Juli 1975)

The crystal structure of monoclinic FeCl₂.2H₂O (F) has been refined using single-crystal data. The metamagnetic behaviour of F and CoCl₂.2H₂O (C) has been determined on the basis of single-crystal measurements. At T=4.2 K the reflexions of the antiferromagnetic zero-field phases disappear when a magnetic field of $H_{c1}(F)=39$ kOe [$H_{c1}(C)=31.8$ kOe] is applied along the direction of sublattice magnetization. In both salts the intermediate-field phase is collinear with a unit cell in which the *a* axis is tripled. This configuration vanishes at $H_{c2}(F)=46$ kOe [$H_{c2}(C)=46$ kOe] when the magnetically saturated configuration is reached. The three phases meet at a triple point at $T_T(F)=11.7$ K and $H_T(F)=42.0$ kOe [$T_T(C)=8.9$ K and $H_T(C)=37.5$ kOe]. Two types of phase transitions and tricritical points have been detected between the different configurations.

1. Einleitung

Bei Antiferromagnetika mit dominierendem Anisotropiefeld wie FeCl₂ (Jacobs & Lawrence, 1967) und FeCl₂.2H₂O (Inomata & Oguchi, 1967) treten unter dem Einfluss eines externen, spinparallelen Magnetfeldes metamagnetische Phasenübergänge auf. Bei diesen geht eine Spinkonfiguration mit geringem magnetischen Gesamtmoment in eine solche mit hohem magnetischen Moment unter Beibehaltung der Spinrichtung über. Metamagnetische Phasenübergänge können auch in zwei Stufen erfolgen, wie bei den antiferromagnetisch ordnenden Doppelhydraten CoCl₂. 2H₂O (Narath, 1964a, b; Shinoda, Chihara & Seki, 1964) und FeCl₂. 2H₂O (Narath, 1965) durch Magnetisierungsmessungen von Kobayashi & Haseda (1964), Narath & Barham (1964) und Narath (1965) nachgewiesen wurde.

Ziel der vorliegenden Arbeit ist die Ermittlung der magnetischen Strukturen von $FeCl_2.2H_2O$ und $CoCl_2.2H_2O$ durch Neutronenbeugung bei tiefen Temperaturen. Damit im Zusammenhang steht die Untersuchung des Verlaufes der metamagnetischen Phasenübergänge bei beiden Substanzen in Abhängigkeit vom Magnetfeld und der Temperatur.

Die Salze $FeCl_2.2H_2O(F)$ und $CoCl_2.2H_2O(C)$ kristallisieren in der monoklinen Raumgruppe C2/mmit den Metallionen im Inversionszentrum. Die Raumtemperatur-Gitterkonstanten

F:
$$a_0 = 7,355$$
, $b_0 = 8,548$, $c_0 = 3,637$ Å, $\beta_0 = 98,20^{\circ}$
(Morosin & Graeber, 1965)
C: $a_0 = 7,279$, $b_0 = 8,553$, $c_0 = 3,569$ Å, $\beta_0 = 97,58^{\circ}$
(Morosin & Graeber, 1963)

weichen nur geringfügig von den entsprechenden Tieftemperaturwerten ab:

F:
$$a_1 = 7,25$$
 (3), $b_1 = 8,40$ (3), $c_1 = 3,60$ (2) Å, $\beta_1 = 98,2^{\circ}$
(T=15K) (Schneider & Weitzel, 1973)
C: $a_1 = 7,207$, $b_1 = 8,498$, $c_1 = 3,564$ Å, $\beta_1 = 97,6^{\circ}$
(T=5K) (Morosin, 1966).

Wie aus Fig. 1(a,b) hervorgeht, sind die M²⁺-Ionen (M=Fe,Co) von einer nahezu quadratischen Anordnung von Cl⁻-Ionen in (010)-Ebenen umgeben. Die Sauerstoffionen der Hydrate liegen ober- und unterhalb dieser Ebenen auf [010]-Achsen. Die Punktsymmetrieelemente am Ort der Metallionen sind eine zweizählige Achse parallel zur *b*-Achse und eine hierzu senkrechte Spiegelebene in der *ac*-Ebene, welche die Chlorionen enthält. Die Struktur besteht aus MCl₂-Ketten parallel zur *c*-Achse, die über schwache Wasserstoff brückenbindungen miteinander verbunden sind.

Aus Suszeptibilitätsmessungen (Narath, 1965, 1964*a*) ist bekannt, dass die Salze unterhalb $T_N(F) =$ 23 K bzw. $T_N(C) = 17,5$ K antiferromagnetisch ordnen. Die Hauptachse α des Suszeptibilitätstensors bildet bei *F* einen Winkel von $\varphi = 32^{\circ}$ mit der *c*-Achse in der *ac*-Ebene und liegt bei *C* in Richtung der *b*-Achse. Der Verlauf der Magnetisierung M(H) bei T=4,2 K (Narath, 1965; Kobayashi & Haseda, 1964) ist durch zwei Stufen bei den kritischen Feldern H_{c1} und H_{c2} gekennzeichnet:

F:
$$H_{c1} = 39$$
 kOe, $M_1 = 1,4 \mu_B$
und $H_{c2} = 46$ kOe, $M_2 = 4,2 \mu_B$

und

C:
$$H_{c1} = 31,8$$
 kOe, $M_1 = 1 \mu_B$
und $H_{c2} = 46$ kOe, $M_2 = 3 \mu_B$

Demnach existieren drei verschiedene magnetische Konfigurationen. Für die 0-Feld-Phase der Fe-Verbindung gibt Narath (1965) die in Fig. 2(a) dargestellte antiferromagnetische Struktur an; für die inter-

^{*} Gekürzte Dissertation, TH Darmstadt (D17), 1975.

mediäre Phase schlägt er die in Fig. 2(b) gezeigte ferrimagnetische Ordnung vor. Beide wurden von Schneider & Weitzel (1973) bestätigt. Bei der Co-Verbindung wurde durch Neutronenbeugungs-

Fig. 1. Kristallstruktur von MCl₂. $2H_2O$ (M = Fe, Co). (a) Projektion längs b auf die ac-Ebene. (b) Projektion längs c auf die ab-Ebene.

Fig. 2. Spinanordnung in der antiferromagnetischen (a) und ferrimagnetischen (b) Phase. Bei F bedeuten weisse Kreise Spins parallel zu α und schwarze Kreise hierzu entgegengesetzt gerichtete. Für C liegen die Spins parallel bzw. antiparallel zur b-Achse.

messungen (Cox, Shirane, Frazer & Narath, 1966; Weitzel & Schneider, 1974) bei T=4,2 K für den intermediären Zustand die gleiche ferrimagnetische Konfiguration [vgl. Fig. 2(b)] nachgewiesen.

2. Verfeinerung der Kristallstruktur von FeCl₂. 2H₂O

Die Kristalle beider Doppelhydrate wurden durch langsames Verdunsten der gesättigten wässrigen Lösung der Ausgangssubstanzen FeCl₂.4H₂O und $CoCl_2.6H_2O$ bei $T(F) = 83^{\circ}C$ (Morosin & Graeber, 1965: Hay & Torrance, 1970) bzw. $T(C) = 71^{\circ}C$ (Morosin & Graeber, 1963; Narath, 1964a) gewonnen. Mit Hilfe eines vollautomatischen Vierkreisdiffraktometers ($\lambda = 0.9505$ Å) wurden 402 Reflexe eines F-Kristalles mit dem Volumen $1,1 \times 1,1 \times 7,0$ mm zwischen den Glanzwinkeln $9^{\circ} < 2\theta < 90^{\circ}$ vermessen (vgl. Tabelle 1). Für die vier stärksten Reflexe wurde eine experimentelle Extinktionskorrektur durchgeführt. Nach einer Absorptionskorrektur wurden die Ausgangsatomparameter mit Hilfe des Least-Squares Programms ORFLS (Busing, Martin & Levy, 1962) variiert.

Tabelle 1. Beobachtete und berechnete Intensitäten I_{obs} und I_{calc}

¥	ĸ	٤.	1	1.410	1J	x 1	- I.a.	I	8	κ ι	1.058	3.410	- 4	* 1	* ees	ease.				1004	*ca)e	~			400	*e+1¢
,	۰	۰	14.4	12.2	,	,				4 -1					7 10.3	48.1		1	,	0.0	c.o	,	7	-1	24.6	22.5
۰.	ò	ō	245.9	271.1		•	1 10	65.5	- 10		11.5	11.5	- 1	•	• • •	2.1	۰	- 2	3	26.2	14.2	,	,	-,	5.5	5.3
•	•	÷.	5.3	7.9	•	2	1 19.1	15.4	- ï	5 -1	34.2	<i>ii</i>	÷.	•	2 33.6	32.7	1	2	3	3.7	2.0		- 7	- 3	14.2	14.5
٠	•	۰	•1.)	ه۲.)		2	1 8.4		•		93.1	34.4	•	•	2 0.1	61	•	- 2	- 3-	6.5				- 1	11.5	19.7
10	•			2.2	10		1 15.1	14.1		5 -1	1.4	2.2	- <u>t</u>			1.2	•	- 2	,	14.3	17.4			-2	u.,	10.1
÷.	÷.	٩	131-3	117.4			1 24.4	24.0	,	· · ·	10.5	14.4		2	(0.4			- 4	,			•		- 31	6.0	5.2
2		. 2				2	1 24-1	21.3		· • •		1.5	- 2		: :::	114								- 24		
2				4.2			20.	21.5			•••			10				- 1					-			
÷.		- 1			- 6		1 11		- 2	1 13		12.2	- 2	10		11.2	í	ś	5	5.5	1.5	ź	10	-3	2.5	1.4
÷.	;	ō	318.0	313.5			1 2.1			1			2	· • •	2 2.5	2.3		- 4	÷	1.1	10.9	•	10	-3	0.0	0.0
2	2	Ó.	57, 9	22.2		4	1 198.4	124.1	12	- i - i		11	•	۰.	2 45.1	34.2	- 2	•	3	50.4	\$2.4	۰	۰	4	32. 4	31. 9
۰.	2	۰	25.5	21.4	•	•	1 2.0	6.4	- 1	-i -i	4.4	4.5	\$	• •	2 3.4	3.6		٠	3	2.4	1.2	- 1	•			11.0
٠	÷.	. 6	42.1	10.9	٠	٠	1 74.4	83.7	,	7 - 3	9.1	×. I			20.1			•		37.7	34.3	- 2			16.3	17.5
	÷.	5		19.9			1 0.0	. c.c	- 1	· · ·	3-0	1.4			í						0.0		÷		2.0	
	÷.			- 111	10		1 2.	21.2	- 2	1.11	- 25.1	11.2		- 1 - 2	;	0.9		- 2	-		113	- 1	- 1		12.7	40.7
ί.	÷.	ě	1.4							- 1 - 33				- i -	i n.i	42.3	÷.	- 5	- í	31.4	12.0	5	i		0.4	1.0
÷.	÷.	ē	47.1	43.4		÷.	1 112		- 1				;	- i -	2 3.4	3.5	ì	- 3	3	2.4	1.0	6	2		0.2	0.9
÷ .	÷.	é	1.4	1.1	÷	÷.	1 1	211			24.5	25.1	•	- i -	2 22.1	21.7		é.		1.6	0.0	2	2	٠	0.0	0.4
٠	3	ġ.	15.0	15.0			1 1.4	2.1			0.1	9.1	- 2	2 -	\$ 11.4	6.6.9	- 2	٠	•	11.4	9.7	•	- 2		7.5	
۰	٠	۰	200.0	265.4	۰	٠	1 56.5	41.0	- 1	· · ·	2.0	2.4	•		2 24.	25.5	•	٠	3	3.4	4.5	- 1			0.0	
2	۰.	•	1.0	2.1		٠	1 14.1)	9 -1	2	21.8			2 0.		•		3					- 2		
2	2		1.22.1	100.0			1 10-1	12-1	2	1.1				- 1 - 2	: ::							- š	÷.		1.4	- C. 2
:		ž						0.9			11.7	100		- 1.2				÷	- 1			è		-	16.5	17.6
10	-	ě	6.5	6.6		3	1 13	3.4		12 -1		- 63	- 1	š.,	3 24.0	23.9	ó		- 5	6.4	1.4	- 7	- 4	•	· · · ·	4.7
н.		۰	44.5	4	•	7	1 4.2	3.1		10 -1	3.7	4.1	•	· · ·	2 35.*	33.0	2	٠	•	39.7	23.4	•	•	٠	10.1	20.4
	•	¢	12.5	9.1		1	1 4.7	5.6	•	10 -1	4.2	6.2	,	· · ·	· · ·	3.4			2	1.0	1.4		- 2		1.1	1.4
	÷.	<u> </u>	12.3	15.5		2	3 2.3	3.8	۰	• 2	223.4	212.0		- 2.5	2 26.		- 1	- 2	-		· · · ·	•	- 2	- 2		
2	2	\$			- 2	-	1 1.1	0.0	- 1	2 2		29.2	- 2	- 2 - 2		1.0							÷.		7.2	0.0
	4	ž			š		1		- 2		100.0	112-2	- 1	- i -	5 6	5.5	;	10	- í	-		ė			0.6	0.9
ž		ē	\$7.9		•		1 7.3	1.6		ě ž		11.2		- ÷ -	2 14.	12.3	- 2	. 6	-3	32.4	\$	- 2		•	0, 5	0.1
۰.		٥	25.4	21.1			1 29.4	31.1	- î.	1.3	4.1	1.2	13		2 4.1		•	۰	-3	5.1	1.7	•	٠	•	0.5	1.2
٠	٠	c	· · ·	4.9		٠	1 0.0	9.9	÷.	1 2	37.9	27.1		•••	2 11.	1 72.4	۰.	۰	- 1	6. 6	۰. ۱			•	3.5	3.1
10	4	۰	- 1-2	1.0	1		1 20.1	15.3	•	1 2	0.3	0.2			2 1-	1.1-1		•	-?	2.4	4.4				2.1	***
τ.	1	. 2	0.0	e			1 6.4					1944	- ?	- 2 - 2	1 1				- 22	2.2	1.5	- 1				
:	4		12.4				1 10.4		- 1					- 11	3 10	1.1.2		;	- 1			- 2	õ		1.5	6.0
÷.	÷		0.2	3.0	÷	10	1 11 1		- 7	: :			÷	÷.,	2 14-	3 15.1		- 1	- 3	4.3	2.3	•	ø	- 6	12.4	13.7
۰.	÷	ō		•		10	1 15.3	12.4		;;;	11.2	10.2	- 4	- é -	÷ .	2.1		- î	-3	35.0	34.6		۰		2.3	0.0
۰	٠	۰	152.9	155.4	•	10	1 7.5	2.4	•	1 2	1	11.5		• •		, c. e	•		- 3	1.3	1.4				47.2	****
2		٩		. 643		10	1 12.1	11.7	1	> 2	1.2	0.7		• •	2 3		- 1	- 1			2.1		- 1	-		.2.4
÷.		•	24.0	×			- 135.				67.4			- 4 3			- 1	- 5	- 24				- 1			11.1
		à	17.6		- 2				•			- 24	- 6	- í -		1 17.4		;	-1	5.6	2.5	•	- i		15.4	12.4
1	•	ā	12.5	12.5		ā.		1.1				11	,	· • •	1 1	2 2.4	12	ž	-3	0.9	0.9	z	2	-+	0, 1	0.0
3		ć		5.0	10	ō.	1 12.1	15.5	é	4 2	124.2	123.4	•	•	a 11.	1 1 1	1	,	- 3	۰.۰	2.4	•	- 2		1.0	0-3
•	•	c	1	16.1			-1 16.5	10.4	- 1	4 2	6.3	3. C	- 2		2 10.		•	•	-)	43.5	+3.0	•	- 2		1.5	- 247
1		<u> </u>					1 103.2	104.9	•			****					- 2	- 2	- 2		11-1	- 1				
Υ.	12					11.1		0.8						- 1 - 2		1 23		- 1	- 14	· · · ·	· · · ·			-		112
τ.	10	ě	11.9	12.1		- 1 - 2		114	- 1	- 2 - 6		36.1	- 7	÷.,		33.4	ź	- 4	- 5	47.7	38.2	- 5	5	- 4	23.4	24.2
6	10	ō	1.4	1.1	ż	÷.	1 120.0	124.1	- 1	4 3		16.3	•		2 0.	e e.e	•	- 4	- 3	11.1	11.1	,	,	-	2.2	2.5
۰	•		12.1	16.0	- 4	2.	1 22.4	15.1	- 5	· • •	0.2	0.2		•	-2 22.	2 24.3	٠	•	-3		2.1	- 2	٠		14.7	14-1
2	٠	- 1	414.0	412.0	•	2.	-1 ii.a	19.3	1	5 2	17.4	13.3						- 5	- ?	•••		- *	- *		3.6	
		- 1		11.4			1 6.5		•		4.2	. 4. 4	- 1	10 :	3 1	t 2.1	٠.	- 2	-2			:	- 2	-1		
:	2	- 1	1.0.4	111.6	10				•		17.5	14.5	- 2	10				- 2	- 23	20.0		- 1	- 2			24.4
		- ;		3.7	- 1		1 2.4	12.3							5	5 31.4	- 7	3	-3	25.0	30.2	;	÷	4	6.4	- 5.1
÷.	ĩ	- 1	16.4			- 11	1 1		- 2	2.5	- 12.1		ž	á	3 101.	4 101.4	•	- 5	-3	0.5	1.0	•	•	- 4	24.4	27.9
ś.	÷	- i	- 4.7	1.1	í	- i - i	-1 -1 -1	41.2		: ;	7.0	4.1		ø	3 1.	1 2.2	÷	ő	-3	5.3	2.4	•	•	-+	1.5	0.3
5	÷.	- î	5.0	4.1	÷.	÷ ۋ	-i 0.	0.4	- 1		0.9	c. 2	•		3 35.	1 32-0	•	•	-3	¢. 9	9.2		٠	-		- 1-1
1	1	1	4.5	a. c	2	•	-1 162.5	167.4	5	7 2	21.6	20.2	- 1	1	3 22.	1		٠	- 3	***	0.0	- 1			- 11	a.c
۰.		1	0.0	1.1	•		-1 2.1	1.5		7 2	1.3	2.1	,	1	, <u>)</u> ,	7 2.4	•	- 6	- ?	0.0			•	-		- 212

Als Ausgangsparameter dienten die von Morosin & Graeber (1965) bestimmten Atomkoordinaten und Temperaturfaktoren; diese aus 349 Röntgenreflexen mit einem Gütefaktor von R=0,099 ermittelten Werte sind in Tabelle 2 aufgeführt. Ausgehend von diesen Parametern, die einen *R*-Wert grösser 0,20 ergaben, konvergierte die Verfeinerung der Atomparameter nach drei Zyklen bei einem Gütefaktor von R=0,079 (für *I*) bei den in Tabelle 2 aufgeführten Atomparametern. Mit Ausnahme der Wasserstoff-Ortsparameter liegt eine gute Übereinstimmung zwischen den röntgenographisch gewonnenen Daten und dem Ergebnis der Neutronenbeugung vor. Die Diskrepanz bei der Wasserstofflage dürfte bei der im Röntgenfall

weniger zuverlässigen Bestimmung dieser Lage zu suchen sein.

3. Untersuchung der magnetischen Strukturen bei T=4.2 K

(a) Antiferromagnetische Struktur

Die Beugungsexperimente wurden in einem He-Badkryostaten auf einem Zweikreisdiffraktometer ($\lambda =$ 1,069 Å) durchgeführt. Zur Vermessung der Reflexe diente eine kleine, in den Kryostaten einsetzbare Dreiviertelkreis-Eulerwiege (Klein & Weitzel, 1976) aus Aluminium, die im kalten Zustand von aussen manipulierbar ist.

Es treten magnetische Reflexe auf, die in der chemischen Zelle ganzzahlig indizierbar sind und der Reflexionsbedingung h+k=2n+1 gehorchen. Die beobachtete Reflexionsbedingung ergibt sich bei antiparalleler Anordnung der magnetischen Momente der C-zentrierten Kationen und der Kationen auf den Zellecken. Bei F wurden zur Bestimmung der Spinrichtung und der Grösse des magnetischen Momentes des Fe²⁺-Ions die Intensitäten von 18 magnetischen Reflexen in der Nähe der Sättigung registriert. Die beste Übereinstimmung zwischen den beobachteten und den berechneten Intensitäten ergibt sich für die in Tabelle 3 aufgeführten Werte. Der Gütefaktor (in I) lautet R=0.033. Die Spinrichtung schliesst mit den Kristallachsen die Winkel $\varphi_a = 65,3 \pm 1,5^\circ, \varphi_b =$ 90°, $\varphi_c = 32.9^\circ \pm 1.5^\circ$ ein. Die Grösse des magnetischen Momentes ergibt sich zu $\mu = 2S\mu_B = 4,47$ (15) μ_B . Für die Kobaltverbindung wurde die Spinrichtung als parallel zur b-Achse verifiziert; das Moment beträgt $\mu = 2S\mu_B = 3,2$ (4) μ_B . Die Schubnikowgruppen lauten (Koptsik, 1966) F: $P_C 2_1/a$ und C: $P_C 2/m$.

(b) Ferrimagnetische Phase

Das bis zu 65 kOe regulierbare Magnetfeld wird in einer zweiteiligen supraleitenden Nb₃Sn-Spule erzeugt und steht in den geschilderten Experimenten senkrecht zur Beugungsebene (Weitzel, 1973). Die Temperatur der Probe kann zwischen 1,6 K und 300 K variiert werden; die Probe ist in kaltem Zustand justierbar.

Das Magnetfeld soll parallel zur Hauptachse des Suszeptibilitätstensors liegen, da sich so ein weitgehender Vergleich mit bekannten experimentellen

Tabelle 3. Beobachtete und berechnete Intensitäten magnetischer Reflexe bei FeCl₂.2H₂O im 0-Feld

Reflex	I_{obs}	I_{calc}	Reflex	I_{obs}	Icalc
0 1 0	5320	5311	2 1 Ī	740	803
100	3098	3093	300	473	505
120	1620	1565	230	495	516
10T	966	941	230	480	516
2 1 0	1048	1078	320	396	376
$\overline{2} \ 1 \ 0$	1040	1078	320	422	376
0 1 Ī	366	418	140	468	443
030	1116	1036	050	267	266
12T	744	696	411	213	255

Ergebnissen (Hay & Torrance, 1970; Kandel, Weber, Frankel & Abeledo, 1974; Kinne, O'Sullivan, Ryan & Scott, 1975; Narath, 1965) durchführen lässt. Da bei F in dieser Anordnung nur die 0k0-Reflexe beobachtbar sind, wurde auch mit einem parallel zur c-Achse angelegten Feld experimentiert.

Bei F verschwindet die Intensität des antiferromagnetischen Reflexes 010 bei T=4,2 K im spinparallelen Feld von H_{c1} =39 kOe; der Phasenübergang ist erster Ordnung. Wenn das Feld parallel zur c-Achse liegt, erhöht sich die Übergangsfeldstärke von H_{c1} = 39 kOe um den Faktor $\cos^{-1} 32^{\circ}$ auf $H'_{c1} = 46$ kOe, da nur die spinparallele Komponente des angelegten Magnetfeldes zur Geltung kommt. Weiterhin wurden allgemein im Verhalten zwischen integralen und Spitzenintensitäten keine Unterschiede beobachtet.

In der ferrimagnetischen Phase treten z.B. im Falle des h00-Scans bei beiden Verbindungen vier neue Reflexe auf, die bei Zugrundelegung der chemischen Zelle mit $\frac{2}{3}00$, $\frac{4}{3}00$, $\frac{8}{3}00$ und $\frac{10}{3}00$ zu indizieren sind. Die Möglichkeit eines Spin-Flops, das Auftreten von ferrimagnetischen Strukturen mit vier Untergittern (Oguchi & Takano, 1964) sowie Modelle mit verdreifachter b-Achse (Narath, 1965) scheiden damit zugunsten ferrimagnetischer Modelle mit sechs Kationen und sechs Untergittern und mit verdreifachter a-Achse aus. Die beobachteten ferrimagnetischen Reflexe bestätigen die in Fig. 2(b) dargestellte ferrimagnetische Struktur. Beim FeCl₂. 2H₂O wurden die Intensitäten von 10 ferrimagnetischen Reflexen registriert, sie sind in Tabelle 4 den berechneten Werten gegenübergestellt. Mit der Spinrichtung der antiferromagnetischen Phase ergibt sich ein Gütefaktor von R =0,035. Die Schubnikowgruppe lautet C2'/m'; die

Tabelle 2. Atomparameter von FeCl₂. 2H₂O aus der Strukturanalyse mit Neutronenbeugung (jeweils obere Zeile) im Vergleich zu den röntgenographisch ermittelten Werten (Morosin & Graeber, 1965) (jeweils untere Zeile)

Fe	<i>b</i> 0·95	x 0·0 0·0	y 0·0 0·0	z 0·0 0·0	$\beta_{11} \times 10^{5}$ 566 967	$\beta_{22} \times 10^5$ 319 704	$\beta_{33} \times 10^5$ 1940 3546	$\beta_{13} \times 10^{5}$ -16 50
Cl	0.96	0·2381 (2) 0·2387 (1)	0·0 0·0	0·5604 (4) 0·5584 (1)	678 960	610 992	1770 3145	68 91
0	0.577	0·0 0·0	0·2419 (4) 0·2427 (3)	0·0 0·0	1473 1472	407 689	3828 6231	-340 -1485
н	-0.372	0·0785 (5) 0·096 (9)	0·3081 (4) 0·33 (1)	0·1442 (9) 0·09 (2)	2055	934	8103	- 506

Grösse des magnetischen Momentes beträgt $\mu = 4,46$ (23) μ_{R} .

Beim CoCl₂. 2H₂O liegen die Spins in der ferrimagnetischen Phase parallel zur *b*-Achse; das Moment wurde berechnet zu 3,2 (3) μ_B ; die Schubnikowgruppe lautet C2/m.

Tabelle 4	. Beob	achtete :	und be	erechn	ete Ii	ntensitäten	der
fer	rimagn	etischen	Phase	e von	FeCl	$_2.2H_2O$	

Reflex	I_{obs}	I_{calc}	Reflex	I_{obs}	I_{calc}
300	4307	4465	$-\frac{1}{3}$ 1 0	4072	4168
400	2053	1971	$\frac{2}{3}20$	1565	1641
<u>§</u> 00	702	673	$-\frac{2}{3}20$	1732	1641
<u>1000</u>	357	353	200	190	260
¥10	4290	4168	020	481	722

Fig. 3. Existenzbereiche der metamagnetischen Phasen (F) abhängig von effektiven, in Spinrichtung liegenden externen Feldern; $H_{c1}=39$ kOe, $H_{c2}=46$ kOe. • antiferromagnetischer Reflex 010. \diamond ferrimagnetischer Reflex $\frac{2}{3}00. \circ$ magnetischer Anteil des Kernreflexes 020.

Fig. 4. Relative Intensität des antiferromagnetischen Reflexes 100 von C (I_0 =560 Imp) als Funktion der Temperatur für die angegebenen, auf H_{c1} normierten angelegten externen Magnetfelder parallel zur b-Achse. + - - + - - + Untergittermagnetisierung. ------ Theoretische Kurve $B_{3/2}(x)$.

Fig. 5. Relative Intensität des ferrimagnetischen Reflexes $\frac{2}{3}00$ von C ($I_0 = 440$ Imp) als Funktion der Temperatur für die aufgeführten, auf H_{c1} normierten externen Magnetfelder.

4. Magnetische Phasengrenzen

Zur Bestimmung der Phasengrenzen im H/T-Diagramm wurden die Reflexintensitäten in isothermen Experimenten als Funktion des Feldes gemessen; daneben wurden Experimente in Abhängigkeit der Temperatur $t = T/T_N$ (F: $T_N = 23$ K; C: $T_N = 17,3$ K) bei konstant gehaltenem Feld durchgeführt. Für T =4,2 K stellt Fig. 3 für F ein Beispiel dar. Der nichtkastenförmige Verlauf der Intensitäten beim Phasenübergang resultiert im wesentlichen aus der apparativ bedingten Axial-Inhomogenität des Magnetfeldes am Ort der Probe. Die Existenz der ferromagnetischen Phase wurde durch magnetische Beiträge zu Kernreflexen nachgewiesen.

Analoge Experimente wurden für C durchgeführt. Hier führte die Inhomogenität des Feldes nur zu einer geringen Verbreiterung des Bereiches des Phasenüberganges. Bei F ist der Kristall mit seiner Nadelachse parallel oder unter einem Winkel von $32,9^{\circ}$ zur Achse des Magneten orientiert, während die Nadelachse des Kristalles bei den Untersuchungen an C in radialer Richtung im Magneten angeordnet ist. Die Temperaturabhängigkeiten für konstant gehaltene Felder sind am Beispiel des CoCl₂.2H₂O für die antiferro- und ferrimagnetische Phase in Fig. 4 und Fig. 5 dargestellt [isotherme Experimente siehe Weitzel & Schneider (1974), Fig. 3 und 4].

Alle Messungen sind in H/T-Diagrammen zusammengefasst. Fig. 6 zeigt dieses von FeCl₂. 2H₂O. Die erwähnten magnetischen Konfigurationen treffen sich in einem Tripelpunkt bei $T_T = 11,7$ (3) K und $H_T = 42,0$ (3) kOe. In ansteigenden Feldern sind die Bereiche A und B identisch mit der antiferromagnetischen Phase AF; die Übergänge in den ferrimagnetischen Zustand sind von erster Ordnung bis $t_1^* = T_1^*/T_N = 0,50$, während die Übergänge in die paramagnetische Phase bei $T > T_T$ als solche zweiter Ordnung klassifiziert werden können. Der Phasenübergang von der ferrimagnetischen Konfiguration in die paramagnetische verläuft bis $t_2^* =$ 0,39 (4) in erster Ordnung und ist bei höheren Temperaturen von zweiter Ordnung.

Beim CoCl₂.2H₂O nehmen antiferro-, ferri- und paramagnetische Phasen die in Fig. 7 dargestellten Bereiche in der H/T-Ebene ein. Die Konfigurationen treffen sich in einem magnetischen Tripelpunkt bei $T_T = 8,9$ (3) K und $H_T = 37,5$ (3) kOe. Die Phasengrenze des antiferromagnetischen Bereiches ist bis $t_1^* = 0,5$ von erster Ordnung, während die Übergänge in die paramagnetische Phase für $T > T_T$ als solche zweiter Ordnung stattfinden. Für $t \le t_2^* = 0,3$ sind die Phasenübergänge zwischen Ferrimagnet und der gesättigten Konfiguration von erster Ordnung.

5. Diskussion

Da die Richtungen der magnetischen Momente in beiden Salzen in allen magnetischen Phasen nicht von den Vorzugsrichtungen abweichen, können die Systeme in erster Näherung als Kollektiv von Ising-Spins mit hierzu parallelem Feld H aufgefasst werden (Narath, 1965). Aus der für einen Phasenübergang notwendigen Gleichsetzung der Energie der einzelnen Phasen folgt (Narath, 1964b) mit den Bezeichnungen von Fig. 2(a):

$$H_{c1} = (g_{\alpha}\mu_{B})^{-1}\sigma^{\alpha}(-8J_{1}+8J_{2}); \text{ bzw.}$$

$$H_{c2} = (g_{\alpha}\mu_{B})^{-1}\sigma^{\alpha}(-8J_{1}-4J_{2}).$$

Daraus ergeben sich mit den beobachteten kritischen Feldstärken und mit $F: g_{\alpha} = 2,13, \sigma^{\alpha} = 2,0$ bzw. $C: g_b = 6,4, \sigma^b = 0,5$ (Narath, 1965) die Austauschkonstanten in Übereinstimmung mit den Ergebnissen von Hay & Torrance (1970) und Torrance & Tinkham (1969) zu

F: $J_1 = -0.27 \text{ cm}^{-1}$ und $J_2 = -0.029 \text{ cm}^{-1}$ C: $J_1 = -3.09 \text{ cm}^{-1}$ und $J_2 = -0.7 \text{ cm}^{-1}$.

Die Grösse J_0 wurde zu F: $J_0=0.58$ cm⁻¹ (Lowe, Abeledo & Misetich, 1972) und C: $J_0=6.4$ cm⁻¹ (Narath, 1964b) abgeschätzt.

Die magnetischen Momente sind im Rahmen der Fehlerbreite in allen Phasen gleich gross, übereinstimmend mit den aus Mössbauerspektren an FeCl₂.2H₂O (Kandel *et al.*, 1974) gewonnenen Ergebnissen. Das aus der Kernreflexeichung ermittelte magnetische Moment von FeCl₂.2H₂O $\mu=2S\mu_B=$ 4,47 μ_B liegt ebenso wie der aus der Sättigungsmagnetisierung bekannte Wert $\mu=4,25$ μ_B (Narath, 1965) über dem theoretischen Ergebnis für reinen Spinmagnetismus (S=2). Dieser Befund dürfte in Analogie zu den entsprechenden Verhältnissen bei FeCl₂ (Ito & Ono, 1965; Wilkinson, Koehler, Cable & Wollan, 1959) zum Teil auf einen durch das Kristallfeld nicht vollständig gelöschten Bahnmagnetismus zurückzuführen sein.

Die bei CoCl₂.2H₂O gemessene Grösse des magnetischen Momentes $\mu = 3,24 \mu_B$ lässt übereinstimmend mit anderen Neutronenbeugungsergebnissen (Cox *et al.*, 1966) ebenfalls auf einen geringen bahnmagnetischen Anteil zum Gesamtmoment schliessen. Die Temperaturabhängigkeit der magnetischen Konfigurationen wurde über die Gitterkonstantenänderung bei den Phasenübergängen mit Hilfe einer Dehnungsmesstreifen-Technik für beide Salze untersucht (Lowe, Abeledo & Misetich, 1971, 1972). Der Methode entsprechend ist das erhaltene magnetische Phasendiagramm im Temperaturbereich $T_N/2 < T < T_N$ ungenau, und es liegen keine Aussagen über die Art der Phasenübergänge vor.

Fig. 6. Magnetisches Phasendiagramm von FeCl₂. 2H₂O. Die Gebiete der antiferromagnetischen, ferrimagnetischen und paramagnetischen Phase sind gekennzeichnet. Im Bereich A liegt Remanenz der ferrimagnetischen Phase vor, B kennzeichnet das Gebiet ohne Braggreflexe (Schneider & Weitzel, 1976). ● Phasenübergang erster Ordnung. ○ Phasenübergang zweiter Ordnung.

Fig. 7. Magnetisches Phasendiagramm von CoCl₂.2H₂O. Die Gebiete der antiferromagnetischen, ferrimagnetischen und paramagnetischen Phasen sind gekennzeichnet. Im Bereich A liegt Remanenz der ferrimagnetischen Struktur vor.
Phasenübergang erster Ordnung. ○ Phasenübergang zweiter Ordnung.

Als wesentliche Merkmale der Phasendiagramme ergibt sich die Existenz trikritischer Punkte t^* , h^* (Griffiths, 1970), bei denen die Phasenübergänge von 1. Ordnung auf 2. Ordnung wechseln. Die Molekularfeldtheorie (Gorter & van Peski-Tinbergen, 1956; Motizuki, 1959) liefert einen Zusammenhang zwischen den Temperaturen t^* und einer konstanten $\lambda = \Gamma/(A+\Gamma)$ in der Form $\lambda = 1/(4-3t^*)$.

A und Γ sind mit den Austauschkonstanten, J_0 , J_1 und J_2 verknüpft (Jacobs & Lawrence, 1967; Narath, 1964b). Für die Phasengrenze AF-FI gilt

$$\frac{\Gamma}{A_1} = \frac{2J_0}{8|J_1| - 8|J_2|}$$

für die Phasengrenze FI-P gilt

$$\frac{\Gamma}{A_2} = \frac{2J_0}{8|J_1| + 4|J_2|}$$

Die aus den Austauschkonstanten erhaltenen λ -Werte

F:

$$\lambda_1 = 0,38$$
 $\lambda_2 = 0,34$

 C:
 $\lambda_1 = 0,40$
 $\lambda_2 = 0,32$

stimmen mit den über die trikritischen Punkte errechneten λ -Werten gut überein:

F:
$$\lambda_1^M = 0,4$$
 $\lambda_2^M = 0,35$
C: $\lambda_1^M = 0,4$ $\lambda_2^M = 0,323$

Der Gesellschaft für Kernforschung in Karlsruhe, Abt. RBT, möchten wir für die Bereitstellung eines Strahlrohres im Forschungsreaktor FR2 und die eines Arbeitsplatzes danken. Das Bundesministerium für Forschung und Technologie hat diese Arbeit in dankenswerter Weise finanziell gefördert.

Literatur

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS: a Fortran Crystallographic Least Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Cox, D. E., SHIRANE, G., FRAZER, B. C. & NARATH, A. (1966). J. Appl. Phys. 37, 1126-1127.

- GORTER, C. J. & VAN PESKI-TINBERGEN, T. (1956). *Physica*, **22**, 273–287.
- GRIFFITHS, R. B. (1970). Phys. Rev. Lett. 24, 715-717.
- HAY, K. A. & TORRANCE, J. B. (1970). *Phys. Rev.* B2, 746–754.
- INOMATA, K. & OGUCHI, T. (1967). J. Phys. Soc. Japan, 23, 765-770.
- ITO, A. & ONO, K. (1965). J. Phys. Soc. Japan, 20, 784-785.
- JACOBS, I. S., & LAWRENCE, P. E. (1967). Phys. Rev. 164, 866–878.
- KANDEL, L., WEBER, M. A., FRANKEL, R. B. & ABELEDO, C. R. (1974). *Phys. Lett.* **46**A, 369–370.
- KINNE, R. W., O'SULLIVAN, W. J., RYAN, J. F. & SCOTT, J. F. (1975). *Phys. Rev.* B11, 1960–1965.
- KLEIN, S. & WEITZEL, H. (1976). Acta Cryst. A. Im Druck.
- KOBAYASHI, H. & HASEDA, T. (1964). J. Phys. Soc. Japan 19, 765–767.
- KOPTSIK, V. A. (1966). Schubnikow Gruppen (in Russisch). Moskau: Izd. MGU.
- Lowe, M. A., ABELEDO, C. R. & MISETICH, A. A. (1971.) *Phys. Lett.* A 37, 274–276.
- Lowe, M. A., ABELEDO, C. R. & MISETICH, A. A. (1972). AIP Conf. Proc. Magn. Magn. Mater. 5, 307-310.
- MOROSIN, B. (1966). J. Chem. Phys. 44, 252-257.
- MOROSIN, B. & GRAEBER, E. J. (1963). Acta Cryst. 16, 1176– 1178.
- MOROSIN, B. & GRAEBER, E. J. (1965). J. Chem. Phys. 42, 898–901.
- MOTIZUKI, K. (1959). J. Phys. Soc. Japan, 14, 759-771.
- NARATH, A. (1964a). Phys. Rev. 136, A 766-A771.
- NARATH, A. (1964b). Phys. Lett. 13, 12–13.
- NARATH, A. (1965). Phys. Rev. 139, A1221-A1227.
- NARATH, A. & BARHAM, D. C. (1964). Bull. Amer. Phys. Soc. 9, 112.
- OGUCHI, T. & TAKANO, F. (1964). J. Phys. Soc. Japan, 19, 1265.
- SCHNEIDER, W. & WEITZEL, H. (1973). Solid. State Commun. 13, 303–306.
- SCHNEIDER, W. & WEITZEL, H. (1976). Solid. State. Commun. Im Druck.
- SHINODA, T., CHIHARA, H. & SEKI, S. (1964). J. Phys. Soc. Japan, 19, 1637–1648.
- TORRANCE, J. B. & TINKHAM, M. (1969). *Phys. Rev.* 187, 595–606.
- WEITZEL, H. (1973). KFK-Nachrichten, Karlsruhe, 4, 27-31.
- WEITZEL, H. & SCHNEIDER, W. (1974). Solid. State Commun. 14, 1025–1027.
- WILKINSON, M. K., KOEHLER, W. C., CABLE, J. W. & WOLLAN, E. O. (1959). *Phys. Rev.* 113, 497–507.